配套资源:电子教案、二维码操作视频、教学大纲、习题与解答及完整源代码
本书特色:
本书以知识的系统性和应用的典型性为切入点,全面系统的介绍了智能图像处理的基本思想、方法和理论。既可以应用于本科和研究生的教学,还可以为从事人工智能专业和数字图像处理的工程技术人才提供丰富的程序开发样例,助力学生和工程技术人才快速了解智能图像处理技术的开发要点。本书提供了丰富的程序开发源代码,无须使用付费开发工具就可以完成具有自主知识产权的数字图像处理案例开发,助力学生和工程技术人才快速完成相关的工程研究项目,提升动手实践和科研自主创新能力。
本书注重实用,重视理论与实践的结合。在介绍基本理论的同时,尽量与当前的实际应用结合,使学生学起来有的放矢。通过新增加的视频信息处理技术在“车牌识别” “米粒质量缺陷检测”“血细胞识别”和“手写字符识别”,学生可以了解视频技术在实际工作中的具体运用。本书可提供全部源代码以及部分代表性案例实操教学视频。
本书教学资源,样书可添加小编微信13146070618索取
本书系统介绍了智能图像处理所需的基本知识与核心算法,主要包括四部分内容:第一部分是数字图像处理的理论基础,包括数字图像处理概述和图像采集系统;第二部分是数字图像处理的基本方法和实例,包括数字图像基础、图像预处理、图像变换和图像复原;第三部分是图像特征提取与分析的理论、方法和实例,包括图像分割、图像特征提取与选择、图像匹配和图像智能识别方法;第四部分是数字图像处理的工程应用案例,包括米粒分类识别、多气泡上升轨迹跟踪、血细胞图像检测、手写字符识别和汽车牌照识别。 本书基础理论知识覆盖面较全,讲解过程深入浅出,可以促进学生对图像处理知识的理解和学习;案例的设计思路和开发经验讲解详细,引导读者进行图像处理技术实际工程能力的锻炼及开拓创新意识的培养;提供电子教案、二维码操作视频、教学大纲、习题与解答及完整源代码电子资源,对从事图像处理领域项目开发的读者有很好的借鉴作用,读者可登录wwwcmpeducom免费注册、审核通过后下载使用,或联系编辑索取(微信13146070618,电话010-88379739);融入了科技创新、文化自信、爱国主义等思政元素,全方位培养学生的家国情怀。 本书可作为高校人工智能、计算机科学与技术、机器人工程、控制科学与工程、通信与信息工程、电子科学与技术、生物医学工程等相关专业的本科生和研究生教材,也可供从事图像处理、分析和识别等相关领域的科技工作者参考。
配套资源:电子教案、二维码操作视频、教学大纲、习题与解答及完整源代码
本书特色:
本书以知识的系统性和应用的典型性为切入点,全面系统的介绍了智能图像处理的基本思想、方法和理论。既可以应用于本科和研究生的教学,还可以为从事人工智能专业和数字图像处理的工程技术人才提供丰富的程序开发样例,助力学生和工程技术人才快速了解智能图像处理技术的开发要点。本书提供了丰富的程序开发源代码,无须使用付费开发工具就可以完成具有自主知识产权的数字图像处理案例开发,助力学生和工程技术人才快速完成相关的工程研究项目,提升动手实践和科研自主创新能力。
本书注重实用,重视理论与实践的结合。在介绍基本理论的同时,尽量与当前的实际应用结合,使学生学起来有的放矢。通过新增加的视频信息处理技术在“车牌识别” “米粒质量缺陷检测”“血细胞识别”和“手写字符识别”,学生可以了解视频技术在实际工作中的具体运用。本书可提供全部源代码以及部分代表性案例实操教学视频。
本书教学资源,样书可添加小编微信13146070618索取
本书系统介绍了智能图像处理所需的基本知识与核心算法,主要包括四部分内容:第一部分是数字图像处理的理论基础,包括数字图像处理概述和图像采集系统;第二部分是数字图像处理的基本方法和实例,包括数字图像基础、图像预处理、图像变换和图像复原;第三部分是图像特征提取与分析的理论、方法和实例,包括图像分割、图像特征提取与选择、图像匹配和图像智能识别方法;第四部分是数字图像处理的工程应用案例,包括米粒分类识别、多气泡上升轨迹跟踪、血细胞图像检测、手写字符识别和汽车牌照识别。 本书基础理论知识覆盖面较全,讲解过程深入浅出,可以促进学生对图像处理知识的理解和学习;案例的设计思路和开发经验讲解详细,引导读者进行图像处理技术实际工程能力的锻炼及开拓创新意识的培养;提供电子教案、二维码操作视频、教学大纲、习题与解答及完整源代码电子资源,对从事图像处理领域项目开发的读者有很好的借鉴作用,读者可登录wwwcmpeducom免费注册、审核通过后下载使用,或联系编辑索取(微信13146070618,电话010-88379739);融入了科技创新、文化自信、爱国主义等思政元素,全方位培养学生的家国情怀。 本书可作为高校人工智能、计算机科学与技术、机器人工程、控制科学与工程、通信与信息工程、电子科学与技术、生物医学工程等相关专业的本科生和研究生教材,也可供从事图像处理、分析和识别等相关领域的科技工作者参考。
随手扫一扫~了解多多